Генетические исследования

Исследование кариотипа

   Кариотип — это исследование хромосом соматических клеток организма на стадии метафазы деления. Основой хромосом является ДНК — носитель генетической информации. Вне процесса деления клеток хромосомы находятся в ядре клетки, поэтому исследовать их сложно.

   Нормальный кариотип мужчины — 46, XY, женщины — 46, ХХ.

   Данный анализ не рекомендуется сдавать натощак. За месяц до исследования необходимо воздержаться от приема антибиотиков.

   Исследование кариотипа проводят у супружеских пар с бесплодием или привычным невынашиванием беременности, а также у имеющих ребенка (детей) с каким-либо хромосомным синдромом.

   Помимо этого, исследование кариотипа рекомендуется при:

   • недостаточном весе ребенка при доношенной беременности (внутриутробная гипотрофия);

   • наличии у ребенка пороков развития двух и более органов или систем;

   • недифференцированной олигофрении у ребенка;

   • наличии у ребенка недифференцированной олигофрении наряду с пороками развития наружных и внутренних органов и (или) дисморфическими чертами лица;

   • наличии у ребенка недифференцированной олигофрении с присутствием более 5 малых аномалий развития.

Генетический маркер риска нарушений липидного обмена — аллельный полиморфизм гена aполипопротеина Е (ApoE)

   Анализ аллельного полиморфизма гена ApoE позволяет определить риск развития ишемической болезни сердца вследствие дисбаланса обмена липидов.

   Ген ApoE кодирует аминокислотную последовательность белка аполипопротеина Е, который образуется в печени и головном мозге и играет большую роль в липидном обмене. Аполипопротеин Е входит в состав хиломикронов и липопротеинов очень низкой плотности (ЛПОНП). Он способствует их удалению из крови путем взаимодействия со специфическим рецептором на поверхности клеток печени. В головном мозге аполипопротеин Е доставляет холестерин от глиальных клеток мозга к нейронам.

   Между последним приемом пищи и сдачей крови на исследование аллельного полиморфизма гена ApoE должно пройти не менее 8-12 часов. В течение этого времени можно пить только воду.

   Исследование аллельного полиморфизма гена ApoE рекомендуется при:

   • нарушении липидного обмена;

   • решении вопроса целесообразности лечения статинами;

   • риске сердечно-сосудистых заболеваний;

   • подборе диеты.

   Различают три аллельных варианта гена ApoE: *2, *3, *4.

   Вариант *3 является самым распространенным.

   Вариант *2 в гетерозиготном состоянии связан со снижением уровня холестерина и β-липополипротеинов в крови.

   У долгожителей (табл. 53) этот вариант встречается чаще. В гомозиготном состоянии вариант *2 встречается редко. У таких людей уровень липидов в плазме крови значительно увеличивается только после приема пищи. Приблизительно у 1 из 50 носителей сочетания *2/*2 развивается гиперлипопротеинемия III типа. Такие люди очень чувствительны к диетотерапии, однако некоторым из них необходимо медикаментозное лечение.

   Вариант *4 связан с повышенным уровнем общего холестерина и β-липополипротеинов, а также со снижением антиоксидантной клеточной активности.

   Этот вариант указывает на риск развития сердечно-сосудистых заболеваний и болезни Альцгеймера. Генотип *4/*4 встречается у долгожителей.

Генетический маркер риска нарушений обмена варфарина — полиморфизмы R144С С->T (CYP2C9*2) и I359L (CYP2C9*3) гена цитохрома CYP2C9

   Анализ полиморфизма R144C С->Т (CYP2C9*2) гена цитохрома CYP2C9 помогает определить риск онкологических заболеваний, подобрать оптимальную дозу лекарств (варфарина, аценокумарола, толбутамида, лозартана, глипизида, фенитоина, ибупрофена) при антикоагуляционной терапии, а также оценить вероятность развития патологии у потомства.

   Исследование полиморфизма R144C С->Т (CYP2C9*2) гена CYP2C9 рекомендуется при:

   • плановом назначении варфарина;

   • кровотечениях, связанных с приемом варфарина, у больного или его родственников (I и II степени родства);

   Риск полиморфизма Т/Т у потомства: при генотипе обоих родителей Т/Т — 100 %, при генотипе родителей Т/Т и С/Т — 50 %, при генотипе обоих родителей С/Т — 25 %.

   • невынашивании беременности;

   • отслойке плаценты и других осложнениях, связанных с беременностью.

   Результаты исследования:

   • С/С — нормальный полиморфизм в гомозиготной форме;

   • С/Т — гетерозиготная форма полиморфизма;

   • Т/Т — мутантный вариант полиморфизмав гомозиготной форме.

Генетический маркер риска развития остеопороза — полиморфизм 1391 °C/Т гена лактазы (LPH)

   Анализ полиморфизма 1391 °C/Т гена лактазы (LPH) помогает выявить лактозную непереносимость и оценить риск развития остеопороза.

   Аминокислотную последовательность лактазы кодирует ген LPH. Лактаза вырабатывается в тонком кишечнике и участвует в расщеплении лактозы — молочного сахара. Лактаза, как правило, присутствует в организме детей. У некоторых взрослых этот фермент перестает вырабатываться. В этом случае употребление молочных продуктов приводит к расстройствам пищеварения. Человек отказывается от молочных продуктов, что часто приводит к дефициту кальция в организме. Это крайне неблагоприятно для женщин, находящихся в постменопаузе, поскольку приводит к развитию остеопороза.

   Исследование полиморфизма 1391 °C/Т гена лактазы (LPH) рекомендуется при:

   • непереносимости молочных продуктов;

   • определении риска развития остеопороза;

   • оценке вероятности непереносимости молочных продуктов у детей старше 1,5 года.

   Результаты исследования:

   • С/С — нормальный вариант полиморфизма в гомозиготной форме. Непереносимость лактозы у взрослых;

   • С/Т — гетерозиготная форма полиморфизма;

   • Т/Т — мутантный вариант полиморфизма в гомозиготной форме. Хорошая переносимость лактозы у взрослых.

   На выработку лактазы у взрослых влияет полиморфизм 1391 °C/Т гена лактазы (LPH). При этом нормальный вариант полиморфизма С связан со снижением выработки лактазы у взрослых, а мутантный вариант Т — с сохранением повышенного синтеза этого фермента. Получается, что в организме гомозиготных носителей варианта С лактоза не усваивается, тогда как носители гомозиготоного варианта Т спокойно питаются молочными продуктами.

Установление биологического родства

   Для разрешения спорных случаев биологического происхождения детей проводят молекулярно-генетическое исследование. Его целью является установление родственных связей между предполагаемыми родителями (отцом или матерью) и ребенком или, напротив, их исключение. Генетическое установление родства основано на принципах хранения и передачи наследственной информации, которая записана в молекуле ДНК.

   ДНК присутствует в ядре каждой клетки организма человека и находится в хромосомах. В каждой клетке имеется по 22 пары хромосом, которые называются аутосомами, и по 2 половые хромосомы. При этом одну из парных хромосом человек получает от матери, а другую — от отца. Половые хромосомы ребенок тоже получает от родителей: Х-хромосому от матери, а Y-хромосому (рождается мальчик) или Х-хромосому (рождается девочка) от отца.

   На хромосомах, полученных от родителей (гомологичных хромосомах), расположен двойной комплект генов — тех участков ДНК, на которых записан код организма.

   Для установления биологического родства из биоматериала (в большинстве лабораторий у обследуемых лиц берут анализ крови) выделяют ДНК, а затем с помощью локус-специфичной ПЦР искусственно увеличивают в миллионы раз число копий аллелей по исследуемым локусам. После этого копии аллелей разделяют и идентифицируют, сравнивая аллели ребенка и предполагаемых родителей.

   В ДНК есть еще и другие участки, которые ничего не кодируют. При этом в каждой гомологичной паре хромосом гены и пустые участки ДНК находятся в одних и тех же местах — локусах. Правда, последовательность расположенных в одних и тех же локусах нуклеотидов может различаться. Неодинаковые последовательности, расположенные в локусах отцовской и материнской хромосом, называются аллелями.

   Человек с одинаковыми аллелями является гомозиготным по данным локусам, а тот, у которого аллели отличаются, — гетерозиготным.

   Как правило, локусы представлены двумя различными аллелями, но у людей одному и тому же локусу могут соответствовать десятки аллелей. Аллели, которые в большом разнообразии присутствуют у людей, называют высокополиморфными. Чем больше исследуется локусов с высокополиморфными аллелями, тем точнее становится молекулярная картина человеческого организма.

   При установлении материнства или отцовства исследуется максимальное количество локусов с высокополиморфными аллелями. В генотипе ребенка в любом из исследуемых локусов одна из аллелей всегда совпадает с аллелью, полученной от матери, в другой — с аллелью, полученной от отца. На этом и основывается методика генетического исследования биологического родства — аллели ребенка сравнивают с аллелями предполагаемых родителей. Если в анализе ребенка отсутствуют как минимум две аллели, совпадающие с аллелями предполагаемого родителя по одноименному хромосомному локусу, родство исключается.

   Генетический анализ на установление биологического родства следует отложить, если кому-либо из обследуемых в последние 6 месяцев проводилась трансплантация мозга или переливание крови.

   В большинстве лабораторий для установления биологического родства используют анализ STR-локусов — участков ДНК длиной от 2 до 5 нуклеотидов. Эти участки могут повторяться. При этом число повторов может отличаться в аллелях для однотипных локусов. Аллели STR-локусов являются высокополиморфными, и установление отцовства (материнства) по ним снижает вероятность случайных совпадений генетических данных у обследуемых людей, поскольку таких локусов очень много.

   К тому же они равномерно распределены по всем хромосомам.

   Чтобы увеличить достоверность исследования (точность не менее 99,9 %), биоматериал рекомендуется сдавать не только предполагаемому родителю, но и тому, родство с которым бесспорно. При отсутствии материала анализа от одного из родителей вероятность результата составляет 99,75 %.